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Abstract— This paper concerns the detection of cardiac cycle’s 

systolic phase from underwater construction workers Doppler 
ultrasound signal based on ensemble empirical mode 
decomposition (EEMD) and discrete Hilbert transform (DHT). 
Each Doppler ultrasound signal is decomposed into its individual 
embedded modes with the EEMD method. Then DHT is applied 
to the disintegrated intrinsic mode functions (IMF) subsequently 
to generate the distinct time-dependent Hilbert amplitude, 
frequency and phase. The mode mixing issue of traditional EMD 
is addressed and resolved using EEMD. In that case for high 
graded signal, better visualization to the Hilbert spectrum is 
obtained. Here, the HS is obtained from the weighted sum of the 
instantaneous amplitudes of all the IMFs at the frequency bins. 
In case of sensitivity and positive predictivity, it is illustrated that 
the proposed algorithm improves the detection rate than the 
traditional EMD method. 

Index Terms— Ensemble empirical mode decomposition, 
systolic phase, discrete Hilbert transform, instantaneous 
frequency, decompression-induced gas bubble. 

I. INTRODUCTION 

Systolic phase detection is a difficult problem because the 
Doppler ultrasound signal is too much affected by 
decompression-induced gas bubbles as well as different types 
of noises. It is common to separate the single cardiac cycle into 
two basic phases – systolic phase and diastolic phase. Cardiac 
cycle is defined as a sequence of mechanical and electrical 
events that repeats with every heartbeat. For a heartbeat of 75, 
the cardiac cycle duration is considered to be 800 milliseconds. 
Systolic phase occupies ~300 milliseconds and diastolic phase 
occupies ~500 milliseconds. It is observed that decompression-
induced gas bubble passes through the pulmonary artery during 
the systolic phase. The formation of gas bubbles in the blood 
stream are due to rapid changes in environmental pressure that 
could happen while carrying out construction work under water 
(caisson), flying or scuba diving. The bubbles remaining in the 
body could block many vessels or compress nerves and result 
in various functional disorders, including strokes and even 
death. Such disorders are called decompression syndromes 
(DCS) or caisson disease. The systolic phase detection plays an 
important role in the field of decompression-induced gas 
bubble detection. 

In this paper, we propose a method to detect systolic phase 
from Doppler ultrasound signal. Detecting systolic phase from 
Doppler ultrasound signal is challenging if the signal belongs 
to high grade in terms of gas bubble detection rate. Doppler 
ultrasound signal is graded from low to high by Spencer and 
Johanson in [1] according to the rate of bubble detection. EMD 
based systolic phase detection algorithm is shown by Chappell 
and Payne in [2] as an associate algorithm by considering only 
two types of Doppler ultrasound signals. However, the 
correspondence between the signals used in [2] and the signal 
grades defined by Spencer in [1] is not clear. Applying EMD to 
the electrocardiogram systolic phase can be detected by the 
detection of QRS complex is published in [3]. In our previous 
study [6], EMD-DHT based systolic phase detection approach 
is proposed without addressing the mode mixing problem of 
EMD. It can also be detected from other types of signals, e.g. 
cardiac output and arterial pressure signals, are discussed in 
[11][12]. The detection result from different signals could be 
different, since there is a time delay in the different signal 
types. This is due to the fact that the cardiac output and arterial 
pressures describe the vaso-mechanical properties of the heart 
while electrocardiogram and Doppler ultrasound describe the 
electrical activity and mechanical properties respectively. 

In this study, the signals are decomposed into a finite 
number and band-limited IMFs using EEMD. To resolve the 
mode mixing problem of traditional EMD, EEMD method is 
employed to estimate the IMFs and then the instantaneous 
frequency (IF) and instantaneous amplitude is determined for 
each component. Once IF is determined, it is normalized 
between 0 and 0.5 and multiplied by a weighting factor. Hilbert 
spectrum (HS) is generated to represent the instantaneous 
amplitude, IF and time. The overall HS is defined as the 
weighted sum of the instantaneous amplitudes of all the IMFs 
at the frequency bin. Then an alternative visualization to the 
HS is proposed. This alternative visualization offers a clue to 
the detection of systolic phase. The properly detection of the 
systolic phase is the most important task to detect gas bubble 
associated DCS. The remaining of the paper is organized as 
follows: section II gives information about experimental setup. 
Section III A, B, C describes the EEMD, DHT and HS 
respectively. Section III D shows how to derive the ratio 
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between low frequency components energy and high frequency 
components energy from HS. Section III E presents the systolic 
phase detection from that ratio derived in previous section. 
Section IV illustrates the results and discussions in terms of 
sensitivity and specificity. Finally section V provides the 
conclusions. 

II. EXPERIMENTAL SETUP 

A pulsed wave (PW) Doppler system comprises a single 
transducer which emits short bursts of ultrasound and then 
“listens” from echoes. In our research, a PW Doppler system 
having 2 MHz carrier frequency is used. Doppler ultrasound 
signal is radiated targeting the pulmonary artery and the 
reflected signal is received. The reflected signal is a sound with 
frequency proportional to the velocity of the reflectors and 
amplitude according to their acoustic properties. Reflections 
from moving objects (blood, gas bubble) will have a Doppler 
shift and will be found in the output signal and the Doppler 
signal is obtained by band pass filtering through hardware. 

 
Fig. 1. The underwater construction workers Doppler ultrasound signal. 

 

III. SYSTOLIC PHASE DETECTION APPROACH  

The Hilbert spectrum (HS) provides the most detailed 
information in a time-frequency-energy distribution compared 
to traditional data processing techniques [4]. In this paper, this 
distribution is represented and interpreted in a slightly different 
way for having some valuable information to detect systolic 
phase. Two steps are required to generate the HS. In the first 
step, EEMD is employed, which is an adaptive decomposition 
method [7]. In the second step, DHT is employed to obtain the 
instantaneous components. HS is generated by the combination 
of EEMD and DHT. This is an adaptive analysis method, 
especially useful for nonlinear and non-stationary signal 
analysis. 

 
A. Ensemble Empirical Mode Decomposition 

The principle of the EMD technique is to decompose a 
signal s(�) into a sum of the band-limited functions ��(�) or 
bases called intrinsic mode functions (IMFs). Each IMF 
satisfies two basic conditions: (i) in the whole data set, the 
number of extrema and the number of zero crossings must be 
the same or differ at most by one, (ii) at any point, the mean 
value of the envelope defined by the local maxima and the 
envelope defined by the local minima is zero. There exist many 
approaches of computing EMD [8]. The following algorithm is 
employed here to decompose signal s(�) into a set of IMF 

components. The process of extracting an IMF from a signal is 
called “the sifting process”. 
1. Set ��(�) = �(�) 
2. Find the extrema (both maxima and minima) of ��(�) 
3. Generate the upper and lower envelopes ℎ(�) and �(�) 

respectively by connecting the local maxima and local 
minima separately with cubic spline interpolation (e.g., 
linear, spline, piece-wise spline). In this paper the linear 
method is chosen. 

4. Calculate the local mean as : ��(�) = [ℎ(�) + �(�)]/2 
5. IMF should have zero local mean; subtract ��(�) from the 

original signal as: ��(�) = ��(�) − ��(�) 
6. Decide whether ��(�) is an IMF or not by checking the 

two basic conditions as described above 
7. Repeat steps 2 to 6 until an IMF ��(�) is found 
The sifting process will be continued until the final residue is a 
constant, a monotonic function, or a function with only one 
maxima and one minima from which no more IMF can be 
derived. At the end of the decomposition, the signal s(�) is 
represented as: �(�) = ∑ ��(�) + ��(�)�  where ��(�) is the 
final. The EMD (individual IMF) of Doppler signal is 
illustrated in Figure2.  

 
Fig. 2. EEMD of the Doppler ultrasound signal showing the first six IMFs.  

 

The EMD algorithm is very sensitive to noise. This can lead 
to complications due to mode mixing problem. Mode mixing 
problem is defined as an IMF that includes oscillations of 
dramatically disparate scales or a component of similar scale 
residing in different IMFs, and can also be due to the presence 
of decompression-induced gas bubble in the signal. EEMD 
method is proposed in [7] to overcome the mode mixing 
problem. EEMD defines the IMF components as the mean of 
an ensemble of trials, each consisting of the signal plus a finite 
amplitude white noise. At first white noise is added to the 
analyzed signal and then EMD is used to decompose the noisy 
signal. These operations produce noisy IMFs. These operations 
are repeated for a certain number of times by adding different 
white noise series each time. Since the noise in each trail is 
different, it is canceled out by averaging corresponding IMFs 
of each trial. The final average of the corresponding IMFs is 
treated as EEMD result. Added noise forces for a uniform scale 
distribution in each trail and the mean of IMFs stay within the 
natural dyadic filter windows, significantly reducing chance of 
mode mixing and preserving the dyadic property [7]. Peak of 
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parabolic shape (figure 4) containing systolic phase could be 
shifted due to the mode mixing problem of EMD. EEMD is 
used in this paper to stop peak shifting from its original 
position. 
B. Discrete Hilbert Transform 

The analytic signal is advantageous in determining the 
instantaneous quantities such as energy, phase and frequency. 
The analytic signal is obtained by applying discrete Hilbert 
transform (DHT) to the IMF. The discrete Hilbert transform 
��[. ] corresponding to the ���  IMF ��(�)	is defined as 

 

��[��(�)] =
�

�
∑

��(�)

���
�
���,���                   (1) 

Then the analytic signal ��(�) corresponding to the ���IMF 
��(�) is defined as 
 

��(t) = ��(�) + ���[��(�)] = ��(�)�
���(�) (2) 

 
where ��(�) and ��(�) are the time-dependent amplitude and 
phase associated with the ���IMF, respectively. The IF of ���  
IMF is then given as the derivative of the phase ��(�)–
calculated at t i.e. 

��(�) =
����(�)

��
     (3) 

 

where ���(�) represents the unwrapped version of 
instantaneous phase ��(�). The derivative in equation (3) is 
evaluated at discrete instant of time t. It should be noted that 
such derivative introduces the abrupt fluctuations of IF and 
hence nonlinear smoothing is required. Here, the moving 
average smoothing filter is used to remove such fluctuations.  

 
Fig. 3. The IFs of the selected (1st to 6th) IMF components. 

 
     The filtering scheme improves the effectiveness of 
computing IF using discrete derivative. The IF of individual 
IMF shown in Figure2 is illustrated in Figure3. The concept of 
IF is physically meaningful only when applied to mono-
component signals. In order to apply the concept of IF to 
arbitrary signals it is necessary to decompose the signals into a 
series of mono-component contributions. In the recent 
approaches [4], EMD technique decomposes a time domain 
signal into a series of mono-component IMFs. Then the IF 
derived for each component provides the meaningful physical 
information. 
 

C. Hilbert Spectral Analysis 
The HS, or a three dimensional (3D) plot that represents the 

distribution of the signal energy as a function of time and 
frequency is generated after having the IMFs as a result of the 
sifting process of EEMD method and IFs from each IMF 
through the concept of analytic signal. In this 3D plot time, 
frequency and energy are plotted on the X-coordinate, Y-
coordinate and the Z-coordinate respectively. All the IFs are 
scaled between 0 and 0.5 and multiplied by the equation 
� = 0.5/(����� − �����) for simplifying the generation of 
HS, where ����� and ����� is the maximum and minimum IF 
calculated from all the IFs. The bin spacing of the HS is 0.5/B, 
where B is the number of desired frequency bins. The overall 
HS is defined as the amalgamation of the spectra of each of the 
IMFs. Hence, each element �(�, �) in the overall HS is defined 
as the weighted sum of the instantaneous amplitudes of all the 
IMFs at the ��� frequency bin. 

�(�, �) = ∑ ��(�)��
(�)�

��� (�)  (4) 
 

�(�, �) = ∑ ��(�)��
(�)�

��� (�)  (5) 
 

where the factor ��
(�)(�) is equal to 1 if � × ��(�)is found 

between two consecutive frequency bins, otherwise it is 0. 
After computing the elements over the frequency bins, H 
represents the instantaneous signal spectrum in time-frequency 
(TF) space [9]. Figure 4 illustrates the Hilbert energy spectrum 
of the Doppler ultrasound signal using 256 frequency bins. In 
this Figure, only one color is plotted for all the levels of energy 
except the zero level. For zero level nothing is plotted. Low 
frequency components energy are contributing more and high 
frequency components energy are contributing less in the HS. 
It is noted that the time resolution of H is equal to the sampling 
rate and the frequency resolution can be chosen up to the 
Nyquist limit [10]. Based on equation (5) the phase matrix 
�(�, �)	representing the phase information corresponding to 
each time-frequency cell of H(b,t) is determined during the 
construction of the Hilbert spectrum. This phase matrix is used 
to reconstruct the signal after performing some operations on 
Hilbert energy spectrum. 

 
Fig. 4. The Hilbert energy spectrum of the Doppler ultrasound signal. 
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D. High Frequency Energy to Low Frequency Energy Ratio 
The HS is significantly affected by noise and its 

interpretation is not very easy. However, a correspondence is 
found between systolic phases in time domain with energy 
activities in the HS by observing the Figure 1 and Figure 4. 
Considering this clue a threshold (TH) is determined to divide 
the HS into two regions, the region of low frequency 
components energy (RL) and the region of high frequency 
components energy (RH). The choice of the threshold is 
performed visually from the HS. It is observed that the RL is 
visually uniform throughout the spectrum. However in RH, 
two parabolic shapes are found (Figure 4) which corresponds 
to the approximate location of two systolic phases in time 
domain. The systolic phase could be detected within any 
location of the parabolic shape. This is due to the mode mixing 
problem of EMD and variation in timing between systolic 
phase sound and pulmonary valve opening sound. The 
influence of mode mixing problem on the HS is reduced by 
employing the EEMD method. The region between two 
parabolic shapes is also visually uniform. In RL, the low 
frequency components energy is summed up over the 
frequency bins at every time instant as L(t) = ∑ ��(�)��

��� . 
Similarly in RH, H(t) = ∑ ��(�)�

������ . Ratio between L(t) 
and H(t) is defined as RA(t)=H(t)/L(t).  
 
E. Systolic Phase Detection through Signal Reconstruction 

In this section, systolic phase is detected by applying the 
signal reconstruction technique to RA and phase vector �(�, �). 
The time domain signal representing systolic phase is 
determined by element wise multiplication of RA(t) and the 
cosine of the phase vector �(�, �) as 

��(�) = ��(�) ∙ cos	[�(�, �)]   (6) 
 

where the signal containing systolic phase is designated by 
sp(�). In order to obtain a unique maximum for each systolic 
phase sp(�) is filtered through the low pass Butterworth filter 
of order ten. Having detected the systolic phase from the first 
block (one second signal) of the Doppler ultrasound, the same 
detection method is repeated for all other blocks of the signal. 
The order of the detected systolic phases is maintained and all 
the blocks are concatenated. The result shows that the detected 
systolic phases are well represented and well localized in 
Figure 5. 

 
Fig.5. Detected systolic phase from two cardiac cycles. 

IV. RESULTS AND DISCUSSIONS 

The proposed method is evaluated using four grades of 
Doppler ultrasound signals. Table 1 summarizes the systolic 
phase detection performance of the proposed method compared 
to our previous EMD based method [6]. The sensitivity (SE) 
and positive predictivity (PP) are used to assess the 
performance of the methods. The sensitivity reports the 
percentage of true systoles that are correctly detected. The 
positive predictivity  reports the percentage of detected systoles 
which are in reality true systoles. The sensitivity and the 
positive predictivity are normally computed by 

SE(%) =
��

�����
∗ 100              (7) 

 

PP(%) =
��

�����
∗ 100               (8) 

where TP is the number of true positives, FN the number of 
false negatives, and FP the number of false positives. In case of 
grade I and grade II signals, same results are obtained from 
EMD and EEMD based methods. However, for grade III and 
grade IV signals better results are obtained by the proposed 
method. It should be noted that these results may be influenced 
by the choice of the TH values. 

TABLE 1: RESULTS OF EVALUATION OF THE PROPOSED ALGORITHM  

 

V. CONCLUSIONS 

In this paper, a combination of EEMD and DHT based 
algorithm is proposed to detect systolic phase. This study 
shows that how systolic phases are visualized in new time-
frequency-energy representations. This representation 
illustrates the empirical relation between time, frequency and 
energy which is very advantageous to the detection of systolic 
phase. It is clear that the presence of parabolic shape in HS 
domain corresponds to the systolic phase in time domain. It is 
also possible to conclude that EEMD and DHT is the perfect 
combination that really could detect systolic phase. 
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