Clippers

A Clipper is a circuit that removes either positive or negative parts of a waveform. Useful for signal shaping, circuit protection and communications.

- positive clipper: removes all the positive parts of the input signal

1. negative clipper: removes all the negative parts of the input signal

Defining conditions: Series resistance, R_s is to be chosen appropriately. For example,
\[
R_B = \frac{1 \text{ V} - 0.7 \text{ V}}{1.0 \text{ mA}} = 30 \Omega
\]

\(R_B\) is the forward base resistance. Then series resistance should be more than 3kΩ and load should be more than 300kΩ. That is,

\[R_L \gg R_S \gg R_B\] thmb rule: 100R_B < R_S < 0.01R_L

Biased Clipper

Usually the reference level is considered at zero or ground. A clipper ckt with reference level other than zero is called Biased Clipper.

Combination clipper

Biases the Clipper without battery

Setting the bias using battery is impractical. Alternatively, we can add more silicon diodes or use a potential divider network.
Clampers
Clamper is a circuit which inserts dc to the signal in order to shift its reference level from zero.

1. positive clamp: shifts ac reference level up to a +ve dc level.
2. negative clamp: shifts ac reference level up to a –ve dc level.

** Use of dc battery is not practical

Using diodes a positive clamper

Using diodes a negative clamper

** RC time constant must be much larger than the time period of the signal,

\[R_L C > 100T \]
Voltage Multipliers

a. Voltage Doublers

b. Voltage Tripler

c. Quadrupler ??